Metallurgical Joining in the Modern Era: Techniques, Principles, and Applications in Welding

Authors

  • Muhammad Ahmad Iqbal VSB - Technical University of Ostrava, Czech Republic Author
  • Anum Shafiq VSB -Technical University of Ostrava, Czech Republic Author
  • Hafsa Iqbal Government College University Faisalabad, Pakistan Author

DOI:

https://doi.org/10.64229/4m2rkp09

Keywords:

Advanced metallurgical joining techniques, Automated welding technologies, Weld quality assessment, Hybrid and solid-state welding processes

Abstract

Welding represents a fundamental metallurgical process that has profoundly transformed modern industry, facilitating the fabrication of intricate structural components, transportation systems, and critical infrastructure. This comprehensive review traces the historical evolution of welding, from early metalworking techniques to contemporary advancements in high-precision, automated methodologies. An in-depth examination of diverse welding techniques including arc welding [Shielded Metal Arc Welding (SMAW), Gas Metal Arc Welding (GMAW), Gas Tungsten Arc Welding (GTAW)], resistance welding, gas welding, and advanced energy beam processes [Laser Beam Welding (LBW), Electron Beam Welding (EBW)] is presented, with a focus on their underlying principles, industrial applications, and technological progressions. Furthermore, solid-state welding processes, such as friction and diffusion welding, are analyzed, underscoring their significance in aerospace, automotive, and high-performance engineering sectors. The study also evaluates prevalent welding defects, quality assessment methodologies (destructive and non-destructive testing), and recent innovations, such as artificial intelligence-driven welding optimization and hybrid welding approaches. With continuous advancements in automation, shielding gas technologies, and real-time monitoring systems, welding remains an indispensable pillar of industrial manufacturing. Future research should prioritize the enhancement of process efficiency, the refinement of weld integrity, and the development of sustainable, high-performance welding solutions to address the evolving demands of modern engineering and fabrication industries.

References

[1]Shravan C, Radhika N, Deepak Kumar NH, Sivasailam B. A review on welding techniques: properties, characterisations and engineering applications. Advances in Materials and Processing Technologies, 2023, 10(2), 1126–1181. DOI: 10.1080/2374068X.2023.2186638

[2]Khalfallah A, Moradi M, Beygi R. Welding and joining of metallic materials: microstructure and mechanical properties. Crystals, 2024, 14(10), 839. DOI: 10.3390/cryst14100839

[3]Chaturvedi M, Vendan SA. Advanced welding techniques. Springer Singapore, 2022. DOI: 10.1007/978-981-33-6621-3

[4]Karkhin VA. Thermal processes in welding.Springer Singapore, 2019, 492. DOI: 10.1007/978-981-13-5965-1

[5]Lewandowski K. Modeling the process of the development of loading units. Cambridge Scholars Publishing, 2024.

[6]Sashank SS, Rajakumar S, Karthikeyan R, Nagaraju DS. Weldability, mechanical properties and microstructure of nickel-based superalloys: A review. 2nd International Conference on Design and Manufacturing Aspects for Sustainable Energy, 2020, 184, 01040. DOI: 10.1051/e3sconf/202018401040

[7]Singh Ramesh. Applied welding engineering: processes, codes, and standards. Butterworth-Heinemann, 2020.

[8]Hughes SE. A quick guide to welding and weld inspection. Woodhead Publishing, 2009.

[9]Messler Jr RW. Principles of welding: processes, physics, chemistry, and metallurgy. John Wiley & Sons, 2024.

[10]Afriansyah AA, Arifin A. Dissimilar metal welding using Shielded Metal Arc Welding: A review. Technology Reports of Kansai University, 2020, 62(4), 1935-1948.

[11]Alkahla I, Pervaiz S. Sustainability assessment of shielded metal arc welding (SMAW) process. IOP Conference Series: Materials Science and Engineering, 2017, 244(1), 012001. DOI: 10.1088/1757-899X/244/1/012001

[12]Haider SF, Quazi MM, BhattiJ, Bashir MN, Ali I. Effect of Shielded Metal Arc Welding (SMAW) parameters on mechanical properties of low-carbon, mild and stainless-steel welded joints: A review. Journal of Advances in Technology and Engineering Research, 2019, 5(5), 191-198. DOI: 10.20474/jater-5.5.1

[13]Weerasekralage LSK, Karunarathne M, Pathirana S. Optimization of Shielded Metal Arc Welding (SMAW) process for mild steel. Journal of Engineering, 2019, 1(6), 345-367. DOI: 10.13140/RG.2.2.23458.58560

[14]Baghel PK. Effect of SMAW process parameters on similar and dissimilar metal welds: An overview. Heliyon, 2022, 8(12), e12161. DOI: 10.1016/j.heliyon.2022.e12161

[15]Muniraju K, Sowjanya NS. Literature survey on gas metal arc welding process. International Journal of Management IT and Engineering, 2022, 12(2), 98-100.

[16]Singh S, Kumar S, Singh H, Singh L. Experimental investigation on AISI 304l & AISI 310 alloys welded by Gas Metal Arc Welding (GMAW) process. Asian Review of Mechanical Engineering, 2014, 3(2), 9-13. DOI: 10.51983/arme-2014.3.2.2384

[17]Dwivedi DK. Arc welding processes: Gas Metal Arc Welding: principle,system, parameters and application. Fundamentals of Metal Joining: Processes, Springer Singapore, 2022. DOI: 10.1007/978-981-16-4819-9_17

[18]Bera T. The history of development of gas metal arc welding process. Indian Science Cruiser, 2020, 34(4), 64-66. DOI: 10.24906/isc/2020/v34/i6/208225

[19]He Y, Song X, Yang Z, Duan R, Xu J, Wang W, et al. Research and development progress of laser–arc hybrid welding: A Review. Metals, 2025, 15(3), 326. DOI: 10.3390/met15030326

[20]Iqbal MA. High-temperature oxidation resistance and surface treatment of forged steel for enhanced performance in internal combustion engines. Ceramics International, 2025, 51(26), 51194-51204. DOI: 10.1016/j.ceramint.2025.08.345

[21]Chakravarthy P, Agilan M, Neethu N. Flux bounded tungsten inert gas welding process. Boca Raton, 2019, 120. DOI: 10.1201/9780367823207

[22]Cui S, Shi Y, Cui Y, Zhu T. The impact toughness of novel keyhole TIG welded duplex stainless steel joints. Engineering Failure Analysis, 2018, 94, 226-231. DOI: 10.1016/j.engfailanal.2018.08.009

[23]Zhang J, Shao P, Wang X, Fan D. Improving weld penetration by two-TIG arc activated via mixing oxygen into shielding gas. The International Journal of Advanced Manufacturing Technology, 2023, 125(1), 169-181. DOI: 10.1007/s00170-022-10703-4

[24]Rakesh N, Mohan A, Navaf P, Harisankar MS, Nambiar SJ, Harikrishnan M. Effect of fluxes on weld penetration during TIG welding – A review. Materials Today: Proceedings, 2023, 72, 3040-3048. DOI: 10.1016/j.matpr.2022.08.386

[25]Świerczyńska A, Varbai B, Pandey C, Fydrych D. Exploring the trends in flux-cored arc welding: scientometric analysis approach. The International Journal of Advanced Manufacturing Technology, 2024, 130(1), 87-110. DOI: 10.1007/s00170-023-12682-6

[26]Senthilkumar B, Kannan T, Madesh R. Optimization of flux-cored arc welding process parameters by using genetic algorithm. The International Journal of Advanced Manufacturing Technology, 2017, 93, 35-41. DOI: 10.1007/s00170-015-7636-7

[27]De Paz RR, Famadico GP, Ortiz AMJ, Tanap RCF, Tayactac RG, Ang EB. Analysis on the industrial applications of flux cored arc welding on an international scale. 14th International Conference on Mechanical and Intelligent Manufacturing Technologies, 2023, 135-142. DOI: 10.1109/ICMIMT59138.2023.10199288

[28]Sharma S, Singh L. A review on the flux cored arc welding through Process Parameter. International Journal of Scientific Research in Science and Technology, 2023, 7(5), 1-11. DOI: 10.32628/IJSRMME

[29]Fande AW, Taiwade RV, Raut L. Development of activated tungsten inert gas welding and its current status: A review. Materials and Manufacturing Processes, 2022, 37(8), 841-876. DOI: 10.1080/10426914.2022.2039695

[30]Mvola B, Kah P. Effects of shielding gas control: welded joint properties in GMAW process optimization. The International Journal of Advanced Manufacturing Technology, 2017, 88, 2369-2387. DOI: 10.1007/s00170-016-8936-2

[31]González-González C, Los Santos-Ortega J, Fraile-García E, Ferreiro-Cabello J. Environmental and economic analyses of TIG, MIG, MAG and SMAW welding processes. Metals, 2023, 13(6), 1094. DOI: 10.3390/met13061094

[32]Cui X, Chen J, Chen M, Wu C. Investigating arc and molten metal transport phenomena in gas metal arc welding with Ar-CO₂ gas mixtures using a numerical method. Physics of Fluids, 2024, 36(3), 033123. DOI: 10.1063/5.0194395

[33]Singh A, Singh RP. A review of effect of welding parameters on the mechanical properties of weld in submerged arc welding process. Materials Today: Proceedings, 2020, 26(2), 1714-1717. DOI: 10.1016/j.matpr.2020.02.361

[34]Dhas JE, Lewise KA, Laxmi G. Submerged arc welding process parameter prediction using predictive modeling techniques. Materials Today: Proceedings, 2022, 64(1), 402-409. DOI: 10.1016/j.matpr.2022.04.757

[35]Zhao B, Chen J, Wu C, Shi L. Numerical simulation of bubble and arc dynamics during underwater wet flux-cored arc welding. Journal of Manufacturing Processes, 2020, 59, 167-185. DOI: 10.1016/j.jmapro.2020.09.054

[36]Patel HN, Chauhan VD, George PM. Effect of process parameters on submerged arc welding: A review. AIP Conference Proceedings, 2021, 2317(1), 050011. DOI: 10.1063/5.0036234

[37]Singh RP, Kumar S, Dubey S, Singh A. A review on working and applications of oxy-acetylene gas welding. Materials Today: Proceedings, 2021, 38(1), 34-39. DOI: 10.1016/j.matpr.2020.05.521

[38]Attah J, Mohammed L, Nyamful A, Donkor P, Asamoah A, Zainudeen MN, et al. Oxy-hydrogen gas as a sustainable fuel for the welding industry: Alternative for oxy-acetylene gas. Cleaner Energy Systems, 2024, 9, 100160. DOI: 10.1016/j.cles.2024.100160

[39]Afandi MY. Comparison of welding results using Oxy Acetylene Welding (OAW) and Gas Metal Arc Welding (GMAW) on brass leaf propeller repair. Journal of Mechanical Engineering Manufactures Materials and Energy, 2024, 8(2), 109-118. DOI: 10.31289/jmemme.v8i2.10256

[40]Civjan SA, Guihan T, Peterman K. Testing of oxyacetylene weld strength. Journal of Constructional Steel Research, 2020, 168, 105921. DOI: 10.1016/j.jcsr.2019.105921

[41]Kimchi M, Phillips DH. Resistance spot welding. Springer Cham, 2023. DOI: 10.1007/978-3-031-25783-4

[42]Soomro IA, Pedapati SR, Awang M. A review of advances in resistance spot welding of automotive sheet steels: emerging methods to improve joint mechanical performance. The International Journal of Advanced Manufacturing Technology, 2022, 118(5), 1335-1366. DOI: 10.1007/s00170-021-08002-5

[43]Farrahi GH, Kashyzadeh KR, Minaei M, Sharifpour A, Riazi S. Analysis of resistance spot welding process parameters effect on the weld quality of three-steel sheets used in automotive industry: Experimental and finite element simulation. International Journal of Engineering, 2020, 33(1), 148-157. DOI: 10.5829/ije.2020.33.01a.17

[44]Klimpel A. Modern lasers and laser technologies in welding engineering. Editor Office, 2023.

[45]Meng W, Xu Z, Ma Q, Yin X, Fang J. Pulse fiber laser welding of AISI 321–AISI 405 stainless steel thick plates butt joints. Journal of Materials Processing Technology, 2019, 271, 214-225. DOI: 10.1016/j.jmatprotec.2019.04.013

[46]Svenungsson J, Choquet I, Kaplan AF. Laser welding process–a review of keyhole welding modelling. Physics Procedia, 2015, 78, 182-191. DOI: 10.1016/j.phpro.2015.11.042

[47]Song L, Zhang P, Li Z, Zeng J, Feng J, Su X, et al. Laser-arc hybrid welding of 25 mm high strength steel sections. Optics & Laser Technology, 2025, 182, B, 112193. DOI: 10.1016/j.optlastec.2024.112193

[48]Li X, Hu Z, Lai J, Gao W, Gong M, Zhang C, et al. A new understanding of laser-arc plasma interaction of hybrid welding based on arc layering behaviors. Journal of Manufacturing Processes, 2023, 88, 125-133. DOI: 10.1016/j.jmapro.2023.01.045

[49]Zhang F, Liu S, Liu F, Zhang H. Stability evaluation of laser-MAG hybrid welding process. Optics & Laser Technology, 2019, 116, 284-292. DOI: 10.1016/j.optlastec.2019.03.036

[50]Siddharth PN, Narayanan CS. A review on Electron Beam Welding process. Journal of Physics: Conference Series, 2020, 1706(1), 012208. DOI: 10.1088/1742-6596/1706/1/012208

[51]Węglowski MS, Błacha S, Phillips A. Electron Beam Welding–techniques and trends–Review. Vacuum, 2016, 130, 72-92. DOI: 10.1016/j.vacuum.2016.05.004

[52]Anderl P, Bolme D. Laser and Electron-Beam Welding–a comparison. Welding and Cutting’89 (Schweissen und Schneiden’89), 1989, 143-148.

[53]Iqbal MA, Skotnicová K, Shafiq A, Sindhu TN. Inconel alloys: a comprehensive review of properties and advanced manufacturing techniques. International Journal of Thermofluids, 2025, 29, 101394. DOI: 10.1016/j.ijft.2025.101394

[54]Kim SH, Kim JD, Jun HU, Cheon JY, Yun S, Kim Y, Ji C. A review on effects of weld porosity in laser-arc hybrid welding for aluminum alloys. Journal of Welding and Joining, 2023, 41(5), 358-366. DOI: 10.5781/JWJ.2023.41.5.6

[55]Vyas HD, Mehta KP, Badheka V, Doshi B. Friction welding of dissimilar joints copper-stainless steel pipe consist of 0.06 wall thickness to pipe diameter ratio. Journal of Manufacturing Processes, 2021, 68, 1176-1190. DOI: 10.1016/j.jmapro.2021.06.050

[56]Ajay V, Babu NK, Ashfaq M, Kumar TM, Krishna KV. A review on rotary and linear friction welding of Inconel alloys. Transactions of the Indian Institute of Metals, 2021, 74, 2583-2598. DOI: 10.1007/s12666-021-02345-z

[57]Li W, Vairis A, Preuss M, Ma T. Linear and rotary friction welding review. International Materials Reviews, 2016, 61(2), 71-100. DOI: 10.1080/09506608.2015.1109214

[58]Kimura M, Ohara K, Kusaka M, Kaizu K, Hayashida K. Effects of tensile strength on friction welding condition and weld faying surface properties of friction welded joints between pure copper and austenitic stainless steel. Journal of Advanced Joining Processes, 2020, 2, 100028. DOI: 10.1016/j.jajp.2020.100028

[59]Iqbal MA, Skotnicová K, Shafiq A, Sindhu TN. Microstructure and properties evolution of dual-layer pulsed GTAW cladded Inconel 625 coatings on API 5L Grade B carbon steel by controlled iron dilution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2025, 727(2), 138322. DOI: 10.1016/j.colsurfa.2025.138322

[60]Liu Z, Li Y, Liu Z, Yang Y, Li Y, Luo Z. Ultrasonic welding of metal to fiber-reinforced thermoplastic composites: A review. Journal of Manufacturing Processes, 2023, 85, 702-712. DOI:10.1016/j.jmapro.2022.12.001

[61]Shen N, Samanta A, Cai WW, Rinker T, Carlson B, Ding H. 3D finite element model of dynamic material behaviors for multilayer ultrasonic metal welding. Journal of Manufacturing Processes, 2021, 62, 302-312. DOI: 10.1016/j.jmapro.2020.12.039

[62]Brito CBG, Teuwen J, Dransfeld CA, Villegas IF. The effects of misaligned adherends on static ultrasonic welding of thermoplastic composites. Composites Part A: Applied Science and Manufacturing, 2022, 155, 106810. DOI: 10.1016/j.compositesa.2022.106810

[63]Satpathy MP, Sahoo SK. Experimental and numerical studies on ultrasonic welding of dissimilar metals. The International Journal of Advanced Manufacturing Technology, 2017, 93, 2531-2545. DOI: 10.1007/s00170-017-0694-2

[64]Samir S, Dave K, Badheka V, Patel, D. Optimization of process parameters of ultrasonic metal welding for multi-layers foil of AL8011 material. Welding International, 2023, 37(3), 119-127. DOI: 10.1080/09507116.2023.2192373

[65]Presse J, Künkler B, Michler T. Stress-based approach for fatigue life calculation of multi-material connections hybrid joined by self-piercing rivets and adhesive. Thin-Walled Structures, 2021, 159, 107192. DOI: 10.1016/j.tws.2020.107192

[66]Cao Y, Zhang Y, Ming W, He W, Ma J. Review: the metal additive-manufacturing technology of the ultrasonic-assisted wire-and-arc additive-manufacturing process. Metals, 2023, 13(2), 398. DOI: 10.3390/met13020398

[67]Müller FW, Chen CY, Schiebahn A, Reisgen U. Application of electrical power measurements for process monitoring in ultrasonic metal welding. Welding in the World, 2023, 67(2), 395-415. DOI: 10.1007/s40194-022-01428-9

[68]Rusnaldy R. Diffusion bonding: An advanced material process. Rotasi, 2001, 3(1), 23-27.

[69]Saleh M, Morisada Y, Ushioda K, Fujii H. Improvement of weldability and fracture behavior of mild steel and A7075 aluminum alloy dissimilar friction stir welded joints by increasing welding speed. Materials Today Communications, 2023, 37, 107372. DOI: 10.1016/j.mtcomm.2023.107372

[70]Phillips DH. Welding engineering: an introduction. John Wiley & Sons, 2023.

[71]Peli S, Bonaldo F, Riva M. Welding of 20 mm thick EH40 steel by means of a single-pass hybrid laser-arc welding technique. Procedia CIRP, 2024, 124, 394-398. DOI: 10.1016/j.procir.2024.08.140

[72]Iqbal MA, Shafiq A. Long-term aging at 475 °C: Effects on the microstructure and properties of custom 465® alloy. Results in Engineering, 2025, 26, 104704. DOI: 10.1016/j.rineng.2025.104704

[73]Meyendorf N, Ida N, Singh R, Vrana J. Handbook of nondestructive evaluation 4.0. Springer Cham, 2025. DOI: 10.1007/978-3-031-84477-5

[74]Zhang F, Sun Y, Guo L, Zhang Y, Liu D, Feng W, et al. Microstructural welding engineering of carbon nanotube/polydimethylsiloxane nanocomposites with improved interfacial thermal transport. Advanced Functional Materials, 34(10), 2311906. DOI: 10.1002/adfm.202311906

[75]Rahadian N. Advancements in welding technology: a comprehensive review of techniques, materials, and applications. Journal Applied Geo-Mining and Metallurgy, 2025, 2(1), 62-110. DOI: 10.1234/jm6e4w53

[76]Chabok A, Cao H, van der Aa E, Pei Y. New insights into the fracture behavior of advanced high strength steel resistance spot welds. Journal of Materials Processing Technology, 2022, 301, 117433. DOI: 10.1016/j.jmatprotec.2021.117433

[77]da Silva Machado T, Machado IG. Structural impact on high-strength low-alloy steel structures welded by Gas Metal Arc Welding with nickel and steel filler metals. Journal of Materials Engineering and Performance, 2025, 34, 27056-27069. DOI: 10.1007/s11665-025-11215-4

[78]Zhang Q, Zhuo Z, Zhou H, Wang J. Microstructure analysis and hardness prediction based on microstructure evolution theory in multi-pass welded joint. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2022, 236(13), 7246-7258. DOI: 10.1177/095440622110731

[79]Liu X, Zhang YH, Wang B, Sun X. Influence of the mean stress on the fatigue life of welded joints under variable amplitude loading. International Journal of Fatigue, 2022, 163, 106972. DOI: 10.1016/j.ijfatigue.2022.106972

[80]Nicolson E. Considerations for an in-process ultrasonic phased array inspection method for narrow gap welds. University of Strathclyde Engineering, 2024. DOI: 10.48730/g37h-8m40

[81]Griffin JM, Jones S, Perumal B, Perrin C. Investigating the Detection Capability of Acoustic Emission Monitoring to Identify Imperfections Produced by the Metal Active Gas (MAG) Welding Process. Acoustics, 2023, 5(3), 714-745. DOI: 10.3390/acoustics5030043

Downloads

Published

2025-12-15

Issue

Section

Articles